A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers

Yufei Zhang Joint work with Christoph Reisinger

Mathematical Institute, University of Oxford

Oxford, 4 September 2018

Outline

- Hybrid stochastic control problem and HJBVIs
- Penalty approximation for HJBVIs
- Discretization and policy iteration for penalized equations

Numerical examples

A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers Stochastic recursive control problems Problem formulation

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, we consider the value function:

$$u(t,x) = \sup_{\tau} \sup_{\alpha} \underbrace{\mathbb{E}^{t,x} \left[\int_{t}^{\tau} e^{-r(s-t)} \ell(\alpha_{s}, X_{s}^{\alpha,t,x}) \, ds + e^{-r(\tau-t)} \xi(\tau, X_{\tau}^{\alpha,t,x}) \right]}_{:= \mathcal{L}_{t,\tau}^{\alpha,t,x} [\xi(\tau, X_{\tau}^{\alpha,t,x})]}$$

over all admissible control processes α and stopping times $\tau \in [t, T]$, subject to the the controlled SDE:

$$dX_{s}^{\alpha,t,x} = b(\alpha_{s}, X_{s}^{\alpha,t,x}) \, ds + \sigma(\alpha_{s}, X_{s}^{\alpha,t,x}) \, dW_{s}$$

$$+ \eta(\alpha_{s}, X_{s}^{\alpha,t,x}, e) \, \tilde{N}(ds, de), \, s \in [t,\tau]; \quad X_{t}^{\alpha,t,x} = x,$$

$$(1)$$

and the terminal payoff:

$$\xi(\tau, X_{\tau}^{\alpha, t, x}) = \zeta(\tau, X_{\tau}^{\alpha, t, x}) \mathbf{1}_{t \leq \tau < T} + g(X_T^{\alpha, t, x}) \mathbf{1}_{\tau = T}.$$

A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers Stochastic recursive control problems Problem formulation

A generalized mixed optimal stopping and control problem:

$$u(t,x) = \sup_{\tau} \sup_{\alpha} \mathcal{E}_{t,\tau}^{\alpha,t,x}[\xi(\tau,X_{\tau}^{\alpha,t,x})].$$

For example,

- American options in an imperfect market;
- optimal investment with (nonlinear) stochastic utilities;
- robust pricing under model uncertainty, e.g.

$$\mathcal{E}_{t,\tau}^{\alpha,t,x}[\cdot] = \inf_{\mathbb{Q}\in\mathcal{M}} \mathbb{E}_{\mathbb{Q}}^{t,x}[\cdot] \quad \text{or} \quad \mathcal{E}_{t,\tau}^{\alpha,t,x}[\cdot] = \sup_{\mathbb{Q}\in\mathcal{M}} \mathbb{E}_{\mathbb{Q}}^{t,x}[\cdot].$$

In this talk, we assume $\mathcal{E}_{t,\tau}^{\alpha,t,x}[\cdot]$ is induced by a backward SDE.

Stochastic recursive control problems

Problem formulation

Consider the value function

$$u(t,x) = \sup_{\tau} \sup_{\alpha} \mathcal{E}_{t,\tau}^{\alpha,t,x}[\xi(\tau,X_{\tau}^{\alpha,t,x})] \coloneqq \sup_{\tau} \sup_{\alpha} Y_{t,\tau}^{\alpha,t,x},$$

where the process $(Y_{s,\tau}^{\alpha,t,x})_{t\leq s\leq \tau}$ satisfies the following backward SDE: $Y_{\tau,\tau}^{\alpha,t,x} = \xi(\tau, X_{\tau}^{\alpha,t,x})$, and $s \in [t, \tau]$,

$$-dY_{s,\tau}^{\alpha,t,x} = f(\alpha_s, X_s^{\alpha,t,x}, Y_{s,\tau}^{\alpha,t,x}, Z_{s,\tau}^{\alpha,t,x}, K_{s,\tau}^{\alpha,t,x}) ds - Z_{s,\tau}^{\alpha,t,x} dW_s - K_{s,\tau}^{\alpha,t,x} \tilde{N}(ds, de),$$

and $X^{\alpha,t,x}$ is given by the controlled jump-diffusion process (1).

Remark

We consider a continuous driver f, which is monotone in y, i.e.,

$$(y-y')(f(\alpha,x,y,z,k)-f(\alpha,x,y',z,k)) \leq \mu |y-y'|^2,$$

for some $\mu \in \mathbb{R}$, and Lipschitz continuous in z and k. The classical linear expectation case corresponds to the additive driver $f(\alpha, x, y, z, k) \equiv \ell(\alpha, x) - ry$. A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers Stochastic recursive control problems Nonlocal HJBVI

Consider the HJB variational inequality (HJBVI):

$$\min\left\{u(\mathbf{x})-\zeta(\mathbf{x}), u_t + \inf_{\alpha \in \mathbf{A}} \left(-L^{\alpha}u - f(\alpha, x, u, (\sigma^{\alpha})^T D u, B^{\alpha}u)\right)\right\} = 0$$

for $\mathbf{x} \in \mathcal{Q}_T = (0, T] \times \mathbb{R}^d$ and u(0, x) = g(x) for $x \in \mathbb{R}^d$. The operators $L^{\alpha} := A^{\alpha} + K^{\alpha}$ and B^{α} are given by:

$$\begin{aligned} A^{\alpha}\phi(\mathbf{x}) &= \frac{1}{2} \mathrm{tr}(\sigma^{\alpha}(x)(\sigma^{\alpha}(x))^{T} D^{2}\phi(\mathbf{x})) + b^{\alpha}(x) \cdot D\phi(\mathbf{x}), \\ K^{\alpha}\phi(\mathbf{x}) &= \int_{E} \left(\phi(t, x + \eta^{\alpha}(x, e)) - \phi(\mathbf{x}) - \eta^{\alpha}(x, e) \cdot D\phi(\mathbf{x})\right) \nu(de), \\ B^{\alpha}\phi(\mathbf{x}) &= \int_{E} \left(\phi(t, x + \eta^{\alpha}(x, e)) - \phi(\mathbf{x})\right) \gamma(x, e) \nu(de), \end{aligned}$$

where ν is the singular measure on $E = \mathbb{R}^n \setminus \{0\}$ and **A** is compact.

For any given parameter $\rho \geq 0$, consider the penalized problem:

$$u_t^{\rho} + \inf_{\alpha \in \mathbf{A}} \left(-L^{\alpha} u^{\rho} - f(\alpha, x, u^{\rho}, (\sigma^{\alpha})^{T} D u^{\rho}, B^{\alpha} u^{\rho}) \right) - \rho(\zeta - u^{\rho})^{+} = 0,$$

for $(t,x) \in \mathcal{Q}_T$, and u(0,x) = g(x) for $x \in \mathbb{R}^d$.

• It holds as $\rho \to \infty$ that

$$(\zeta - u^{\rho})^+ \rightarrow 0,$$

thus u^{ρ} converges to the solution u of the HJBVI as $\rho \rightarrow \infty$.

• Moreover, we have $u^{\rho_1} \leq u^{\rho_2} \leq u$, for any $0 \leq \rho_1 \leq \rho_2$.

Theorem (Convergence rate of the value function)

Suppose the obstacle ζ is Lipschitz continuous in x and Hölder continuous in t with exponent $\mu \in (0, 1]$, then we have

$$0 \leq u(\mathbf{x}) - u^{\rho}(\mathbf{x}) \leq C_0 \rho^{-\min(\mu, \frac{1}{2})}, \quad \mathbf{x} \in \bar{\mathcal{Q}}_T.$$

If we further assume $\zeta \in C^{1,2}_b(\bar{Q}_T)$, then we have

$$0 \leq u(\mathbf{x}) - u^{
ho}(\mathbf{x}) \leq C_0/
ho, \quad \mathbf{x} \in \bar{\mathcal{Q}}_T.$$

To approximate the free boundary:

$$\Gamma = \{ \mathbf{x} \in \bar{\mathcal{Q}}_T \mid u(\mathbf{x}) = \zeta(\mathbf{x}) \},\$$

we suppose the estimate $0 \le u(\mathbf{x}) - u^{\rho}(\mathbf{x}) \le C_0 \rho^{-\mu}$ holds for some constants $C_0 > 0$ and $\mu \in (0, 1]$, and define for each $\rho > 0$ the set

$$\Gamma_{\rho} = \{ \mathbf{x} \in \bar{\mathcal{Q}}_{\mathcal{T}} \mid \zeta(\mathbf{x}) - C_0 \rho^{-\mu} \le u^{\rho}(\mathbf{x}) \le \zeta(\mathbf{x}) \}.$$

It holds that $\Gamma \subset \Gamma_{\rho}$ for all $\rho > 0$, and

$$\lim_{\rho\to\infty} d_{\mathcal{H}}(\Gamma_{\rho}\cap K,\Gamma\cap K)=0,$$

for any given compact subset $K \subset \overline{Q}_T$.

A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers Discretization and policy iteration for penalized HJBVIs Semi-implicit monotone schemes

Discretize the penalized equation:

$$\inf_{\alpha \in \mathbf{A}} \left(u_t^{\rho} - (A^{\alpha} + K^{\alpha}) u^{\rho} - f(\alpha, x, u^{\rho}, (\sigma^{\alpha})^T D u^{\rho}, B^{\alpha} u^{\rho}) \right) - \rho(\zeta - u^{\rho})^+ = 0$$

by a semi-implicit monotone scheme: for $n = 0, \ldots, N - 1$,

$$\inf_{\alpha \in \mathbf{A}} \left(\frac{U_i^{n+1} - U_i^n}{\Delta t} - A_h^{\alpha} U_i^{n+1} - K_h^{\alpha} U_i^n - \overline{f}(\alpha, x_i, U_i^{n+1}, \Delta U_i^n, B_h^{\alpha} U_i^n) - \rho(\zeta(t_{n+1}, x_i) - U_i^{n+1})^+ \right) = 0, \quad i \in \mathbb{Z}^d,$$

with monotone approximations $A_h^{\alpha} \approx A^{\alpha}$, $K_h^{\alpha} \approx K^{\alpha}$, $B_h^{\alpha} \approx B^{\alpha}$, and a monotone numerical flux \overline{f} for the nonlinearity of f on Du. A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers Discretization and policy iteration for penalized HJBVIs Convergence analysis

- Stability in sup-norm: CFL condition independent of the penalty parameter ρ.
- Convergence: for each fixed ρ ≥ 0, the numerical solution converges to the solution of the penalized equation uniformly on compact sets as h → 0.

Remark

Well-posedness: construct Lipschitz approximations of the monotone driver.

A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers Discretization and policy iteration for penalized HJBVIs Policy iteration

Given
$$u^n \in \mathbb{R}^M$$
, find $u \in \mathbb{R}^M$ by solving

$$0 = \mathcal{G}_h^{n+1}[u]_i$$

= $\inf_{\alpha \in \mathbf{A}} \left(\frac{u_i - u_i^n}{\Delta t} - A_h^{\alpha} u_i - K_h^{\alpha} u_i^n - \overline{f}(\alpha, x_i, u_i, \Delta u_i^n, B_h^{\alpha} u_i^n) - \rho(\zeta(t_{n+1}, x_i) - u_i)^+ \right), \quad i = 1, \dots, M.$

 Generalized policy iteration can be applied if the driver f admits a "weak" partial derivative ∂^o_vf in y such that:

$$f(\cdot, \cdot, y + h, \cdot, \cdot) - f(\cdot, \cdot, y, \cdot, \cdot) - \partial_y^o f(\cdot, \cdot, y + h, \cdot, \cdot)h = \mathcal{O}(h),$$

which is satisfied by piecewise differentiable functions, convex/concave functions and more generally semismooth functions.

A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers Discretization and policy iteration for penalized HJBVIs Policy iteration

• Given the current iterate $u^{(k)}$, we compute

$$\alpha_i^{(k+1)} \in \argmin_{\alpha \in \mathbf{A}} \mathcal{G}_h^{n+1}[u^{(k)}]_i, \quad \forall i = 1, \dots, M,$$

and find the next iterate $u^{(k+1)}$ by solving a linear system.

• The iterates $\{u^{(k)}\}$ converge superlinearly to the solution u of $\mathcal{G}_h^{n+1}[u] = 0$ in a neighbourhood of u, i.e.,

$$||u^{(k+1)} - u|| = O(||u^{(k)} - u||).$$

The sets of optimal controls

$$oldsymbol{\mathsf{A}}_{u^{(k)}}\coloneqq\prod_{i=1}^{M}rgmin_{lpha\inoldsymbol{\mathsf{A}}}argin_{h}^{n+1}[u^{(k)}]_{i}$$

converge in terms of the Hausdorff metric as $k \to \infty$.

Numerical experiments

Optimal investment under ambiguity

Consider a risk-free asset and a risky asset

$$dS_t = S_{t^-}[b\,dt + \sigma\,dW_t + (1 \wedge |e|)\, ilde{\mathcal{N}}(dt,de)],$$

on $(\Omega, \mathcal{F}, \mathbb{P})$.

An investor with initial wealth x at t can control their wealth process $X^{\alpha,t,x}$ by choosing the percentage α_t of wealth held in the risky asset, and also the duration of the investment τ , which leads to the terminal payoff $\xi_{\tau}^{\alpha,t,x} = g(X_{\tau}^{\alpha,t,x})$.

Numerical experiments

Optimal investment under ambiguity

For given parameters $r, R, \kappa_1, \kappa_2 > 0$, we consider the following ambiguity in the market:

- uncertainty in the discount rate: \mathcal{B}_t is a class of adapted processes $\beta = (\beta_s)_{s \in [t,T]}$ valued in [r, R];
- uncertainty in the Brownian motion and the random jump source: $\mathcal{M} = \left\{ \mathbb{Q} \sim \mathbb{P} \mid \frac{d\mathbb{Q}}{d\mathbb{P}} \middle|_{\mathcal{F}_t} = M_t^{\pi,\ell} \right\}$ such that

$$dM_t^{\pi,\ell} = M_{t-}^{\pi,\ell} \left(\pi_t dW_t + \int_E \ell_t(e) \, \tilde{N}(de, dt) \right); \quad M_0^{\pi,\ell} = 1,$$

where (π, ℓ) are predictable processes satisfying $|\pi_t| \leq \kappa_1$ and $0 \leq \ell_t(e) \leq \kappa_2(1 \wedge |e|)$.

Optimal investment under ambiguity

Maximize the performance in the worst-case scenario:

$$u_*(t,x) = \sup_{\tau \in \mathcal{T}_t} \sup_{\alpha \in \mathcal{A}_t} \inf_{\beta \in \mathcal{B}_t, \mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}} \bigg[\exp\big(- \int_t^\tau \beta_s \, ds \big) \xi_{\tau}^{\alpha,t,x} \bigg],$$

which corresponds to a HJBVI with a concave driver:

$$\min \left\{ \inf_{\alpha \in [0,1]} \left(u_t - L^{\alpha}u - ru^{-} + Ru^{+} + \alpha \kappa_1 \sigma |xu_x| + \kappa_2 B_*^{\alpha}u \right), \\ u(t,x) - g(x) \right\} = 0, \quad x \in (0,T] \times \mathbb{R}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers Numerical experiments Optimal investment under ambiguity

We can also consider the best-case scenario:

$$u^*(t,x) = \sup_{\tau \in \mathcal{T}_t} \sup_{\alpha \in \mathcal{A}_t} \sup_{\beta \in \mathcal{B}_t, \mathbb{Q} \in \mathcal{M}} \mathbb{E}_{\mathbb{Q}}\bigg[\exp\big(-\int_t^\tau \beta_s \, ds\big)\xi_{\tau}^{\alpha,t,x}\bigg],$$

which corresponds to a HJBVI with a convex driver.

•
$$g(x) = 1 - 2e^{-2x}$$
.

- Lévy measure $\nu(de) = \frac{1}{|e|} \exp(-\mu |e|) de$ on \mathbb{R} .
- Model parameters :

ſ	b	σ	μ	r	R	κ_1	κ_2	Τ	<i>x</i> 0
ſ	0.1	0.2	6	0.02	0.04	0.2	0.5	1	1

Table: Parameters for the optimal investment problem under ambiguity.

Numerical experiments

Optimal investment under ambiguity

• Choose $\Delta t = \mathcal{O}(h)$ for a consistent approximation. Set the threshold of policy iteration as 10^{-10} .

• Approximation error:
$$\mathcal{O}(h) + \mathcal{O}(\Delta t)$$
.

	h	1/40	1/80	1/160	1/320	1/640
$ ho = 10^3$	(a)	4	4	4	4	5
	(b)	0.7292780	0.7292918	0.7292987	0.7293021	0.7293038
	(c)			2.004	2.004	2.002
$ ho = 16 \cdot 10^3$	(a)	4	4	4	5	4
	(b)	0.7293262	0.7293271	0.7293275	0.7293277	0.7293278
	(c)			2.004	2.004	2.009

Table: Numerical solutions of the value function u_* for the worst-case senario. Shown are: (a) the maximal number of iterations among all time points; (b) the numerical solutions $U_{\rho,h}$ at (T, x_0) ; (c) the rate of increments $(U_{\rho,2h} - U_{\rho,4h})/(U_{\rho,h} - U_{\rho,2h})$.

Numerical experiments

Optimal investment under ambiguity

- Perform computations with the mesh size h = 1/640.
- A first-order monotone convergence.

ρ		10 ³	$4 imes 10^3$	$16 imes 10^3$	$64 imes10^3$
<i>u</i> *	(a)	0.75071151	0.75071215	0.75071231	0.75071235
	(b)			3.9998	4.0006
<i>u</i> *	(a)	0.72930381	0.72932303	0.72932783	0.72932903
	(b)			4.0016	3.9976

Table: Numerical results of the value functions u^* and u_* with different penalty parameters. Shown are: (a) the numerical solutions U_{ρ} at (T, x_0) ; (b) the rate of increments $(U_{\rho/4} - U_{\rho/16})/(U_{\rho} - U_{\rho/4})$.

Numerical experiments

Optimal investment under ambiguity

Figure: Feedback control strategies with $\rho = 16 \times 10^3$ for the best-case scenario (left) and the worst-case scenario (right), where the early stopping region is white.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Construct the solution and free boundary of HJBVIs with monotone drivers from a sequence of penalized equations, for which the penalization error is estimated.
- Establish the well-posedness and convergence of semi-implicit monotone schemes for the penalized equation.
- Propose policy iteration with local superlinear convergence for solving the discrete equation.

• C. Reisinger, and Y. Zhang, A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone drivers, preprint, arXiv:1805.06255 [math.NA], 2018.

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ