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Stochastic recursive control problems

Problem formulation

Let (Ω,F,P) be a probability space, we consider the value function:

u(t, x)= sup
τ

sup
α

Et,x [

∫ τ

t
e−r(s−t)`(αs ,X

α,t,x
s ) ds + e−r(τ−t)ξ(τ,Xα,t,x

τ )]︸ ︷︷ ︸
:=Lα,t,xt,τ [ξ(τ,Xα,t,xτ )]

,

over all admissible control processes α and stopping times
τ ∈ [t,T ], subject to the the controlled SDE:

dXα,t,x
s =b(αs ,X

α,t,x
s ) ds + σ(αs ,X

α,t,x
s ) dWs (1)

+ η(αs ,X
α,t,x
s , e) Ñ(ds, de), s ∈ [t, τ ]; Xα,t,x

t = x ,

and the terminal payoff:

ξ(τ,Xα,t,x
τ ) = ζ(τ,Xα,t,x

τ )1t≤τ<T + g(Xα,t,x
T )1τ=T .
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Stochastic recursive control problems

Problem formulation

A generalized mixed optimal stopping and control problem:

u(t, x) = sup
τ

sup
α
Eα,t,xt,τ [ξ(τ,Xα,t,x

τ )].

For example,

American options in an imperfect market;

optimal investment with (nonlinear) stochastic utilities;

robust pricing under model uncertainty, e.g.

Eα,t,xt,τ [·] = inf
Q∈M

Et,x
Q [·] or Eα,t,xt,τ [·] = sup

Q∈M
Et,x
Q [·].

In this talk, we assume Eα,t,xt,τ [·] is induced by a backward SDE.
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Stochastic recursive control problems

Problem formulation

Consider the value function

u(t, x) = sup
τ

sup
α
Eα,t,xt,τ [ξ(τ,Xα,t,x

τ )] := sup
τ

sup
α

Y α,t,x
t,τ ,

where the process (Y α,t,x
s,τ )t≤s≤τ satisfies the following backward

SDE: Y α,t,x
τ,τ = ξ(τ,Xα,t,x

τ ), and s ∈ [t, τ ],

−dY α,t,x
s,τ =f (αs ,X

α,t,x
s ,Y α,t,x

s,τ ,Zα,t,xs,τ ,Kα,t,x
s,τ )ds − Zα,t,xs,τ dWs

− Kα,t,x
s,τ Ñ(ds, de),

and Xα,t,x is given by the controlled jump-diffusion process (1).

Remark

We consider a continuous driver f , which is monotone in y, i.e.,

(y − y ′)(f (α, x , y , z , k)− f (α, x , y ′, z , k)) ≤ µ|y − y ′|2,

for some µ ∈ R, and Lipschitz continuous in z and k.
The classical linear expectation case corresponds to the additive
driver f (α, x , y , z , k) ≡ `(α, x)− ry .
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Stochastic recursive control problems

Nonlocal HJBVI

Consider the HJB variational inequality (HJBVI):

min
{
u(x)−ζ(x), ut+ inf

α∈A

(
−Lαu−f (α, x , u, (σα)TDu,Bαu)

)}
= 0

for x ∈ QT = (0,T ]× Rd and u(0, x) = g(x) for x ∈ Rd .
The operators Lα := Aα + Kα and Bα are given by:

Aαφ(x) =
1

2
tr(σα(x)(σα(x))TD2φ(x)) + bα(x) · Dφ(x),

Kαφ(x) =

∫
E

(
φ(t, x + ηα(x , e))− φ(x)− ηα(x , e) · Dφ(x)

)
ν(de),

Bαφ(x) =

∫
E

(
φ(t, x + ηα(x , e))− φ(x)

)
γ(x , e) ν(de),

where ν is the singular measure on E = Rn \ {0} and A is compact.
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Penalty approximation for HJBVIs

For any given parameter ρ ≥ 0, consider the penalized problem:

uρt + inf
α∈A

(
− Lαuρ − f (α, x , uρ, (σα)TDuρ,Bαuρ)

)
−ρ(ζ − uρ)+ = 0,

for (t, x) ∈ QT , and u(0, x) = g(x) for x ∈ Rd .

It holds as ρ→∞ that

(ζ − uρ)+ → 0,

thus uρ converges to the solution u of the HJBVI as ρ→∞.

Moreover, we have uρ1 ≤ uρ2 ≤ u, for any 0 ≤ ρ1 ≤ ρ2.
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Penalty approximation for HJBVIs

Theorem (Convergence rate of the value function)

Suppose the obstacle ζ is Lipschitz continuous in x and Hölder
continuous in t with exponent µ ∈ (0, 1], then we have

0 ≤ u(x)− uρ(x) ≤ C0ρ
−min(µ, 1

2
), x ∈ Q̄T .

If we further assume ζ ∈ C 1,2
b (Q̄T ), then we have

0 ≤ u(x)− uρ(x) ≤ C0/ρ, x ∈ Q̄T .
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Penalty approximation for HJBVIs

To approximate the free boundary:

Γ = {x ∈ Q̄T | u(x) = ζ(x)},

we suppose the estimate 0 ≤ u(x)− uρ(x) ≤ C0ρ
−µ holds for some

constants C0 > 0 and µ ∈ (0, 1], and define for each ρ > 0 the set

Γρ = {x ∈ Q̄T | ζ(x)− C0ρ
−µ ≤ uρ(x) ≤ ζ(x)}.

It holds that Γ ⊂ Γρ for all ρ > 0, and

lim
ρ→∞

dH(Γρ ∩ K , Γ ∩ K ) = 0,

for any given compact subset K ⊂ Q̄T .
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Discretization and policy iteration for penalized HJBVIs

Semi-implicit monotone schemes

Discretize the penalized equation:

inf
α∈A

(
uρt−(Aα+Kα)uρ−f (α, x , uρ, (σα)TDuρ,Bαuρ)

)
−ρ(ζ−uρ)+ = 0

by a semi-implicit monotone scheme: for n = 0, . . . ,N − 1,

inf
α∈A

(
Un+1
i − Un

i

∆t
−AαhUn+1

i − Kα
h U

n
i − f̄ (α, xi ,U

n+1
i ,∆Un

i ,B
α
h U

n
i )

− ρ(ζ(tn+1, xi )− Un+1
i )+

)
= 0, i ∈ Zd ,

with monotone approximations Aαh ≈ Aα, Kα
h ≈ Kα, Bαh ≈ Bα,

and a monotone numerical flux f̄ for the nonlinearity of f on Du.
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Discretization and policy iteration for penalized HJBVIs

Convergence analysis

Stability in sup-norm: CFL condition independent of the
penalty parameter ρ.

Convergence: for each fixed ρ ≥ 0, the numerical solution
converges to the solution of the penalized equation uniformly
on compact sets as h→ 0.

Remark

Well-posedness: construct Lipschitz approximations of the
monotone driver.
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Discretization and policy iteration for penalized HJBVIs

Policy iteration

Given un ∈ RM , find u ∈ RM by solving

0 =Gn+1
h [u]i

= inf
α∈A

(
ui − uni

∆t
− Aαhui − Kα

h u
n
i − f̄ (α, xi , ui ,∆uni ,B

α
h u

n
i )

− ρ(ζ(tn+1, xi )− ui )
+

)
, i = 1, . . . ,M.

Generalized policy iteration can be applied if the driver f
admits a “weak” partial derivative ∂oy f in y such that:

f (·, ·, y + h, ·, ·)− f (·, ·, y , ·, ·)− ∂oy f (·, ·, y + h, ·, ·)h = O(h),

which is satisfied by piecewise differentiable functions,
convex/concave functions and more generally semismooth
functions.
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Discretization and policy iteration for penalized HJBVIs

Policy iteration

Given the current iterate u(k), we compute

α
(k+1)
i ∈ arg min

α∈A
Gn+1
h [u(k)]i , ∀i = 1, . . . ,M,

and find the next iterate u(k+1) by solving a linear system.

The iterates {u(k)} converge superlinearly to the solution u of
Gn+1
h [u] = 0 in a neighbourhood of u, i.e.,

‖u(k+1) − u‖ = O(‖u(k) − u‖).

The sets of optimal controls

Au(k) :=
M∏
i=1

arg min
α∈A

Gn+1
h [u(k)]i

converge in terms of the Hausdorff metric as k →∞.
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Numerical experiments

Optimal investment under ambiguity

Consider a risk-free asset and a risky asset

dSt = St− [b dt + σ dWt + (1 ∧ |e|) Ñ(dt, de)],

on (Ω,F ,P).
An investor with initial wealth x at t can control their wealth
process Xα,t,x by choosing the percentage αt of wealth held in the
risky asset, and also the duration of the investment τ , which leads
to the terminal payoff ξα,t,xτ = g(Xα,t,x

τ ).
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Numerical experiments

Optimal investment under ambiguity

For given parameters r ,R, κ1, κ2 > 0, we consider the following
ambiguity in the market:

uncertainty in the discount rate: Bt is a class of adapted
processes β = (βs)s∈[t,T ] valued in [r ,R];

uncertainty in the Brownian motion and the random jump
source: M =

{
Q ∼ P | dQdP

∣∣
Ft

= Mπ,`
t

}
such that

dMπ,`
t = Mπ,`

t−

(
πtdWt +

∫
E
`t(e) Ñ(de, dt)

)
; Mπ,`

0 = 1,

where (π, `) are predictable processes satisfying |πt | ≤ κ1 and
0 ≤ `t(e) ≤ κ2(1 ∧ |e|).
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Numerical experiments

Optimal investment under ambiguity

Maximize the performance in the worst-case scenario:

u∗(t, x) = sup
τ∈Tt

sup
α∈At

inf
β∈Bt ,Q∈M

EQ

[
exp

(
−
∫ τ

t
βs ds

)
ξα,t,xτ

]
,

which corresponds to a HJBVI with a concave driver:

min
{

inf
α∈[0,1]

(
ut − Lαu − ru− + Ru+ + ακ1σ|xux |+ κ2B

α
∗ u
)
,

u(t, x)− g(x)
}

= 0, x ∈ (0,T ]× R.
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Numerical experiments

Optimal investment under ambiguity

We can also consider the best-case scenario:

u∗(t, x) = sup
τ∈Tt

sup
α∈At

sup
β∈Bt ,Q∈M

EQ

[
exp

(
−
∫ τ

t
βs ds

)
ξα,t,xτ

]
,

which corresponds to a HJBVI with a convex driver.

g(x) = 1− 2e−2x .

Lévy measure ν(de) = 1
|e| exp(−µ|e|)de on R.

Model parameters :

b σ µ r R κ1 κ2 T x0
0.1 0.2 6 0.02 0.04 0.2 0.5 1 1

Table: Parameters for the optimal investment problem under ambiguity.
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Numerical experiments

Optimal investment under ambiguity

Choose ∆t = O(h) for a consistent approximation. Set the
threshold of policy iteration as 10−10.

Approximation error: O(h) +O(∆t).

h 1/40 1/80 1/160 1/320 1/640
ρ = 103 (a) 4 4 4 4 5

(b) 0.7292780 0.7292918 0.7292987 0.7293021 0.7293038
(c) 2.004 2.004 2.002

ρ = 16 · 103 (a) 4 4 4 5 4
(b) 0.7293262 0.7293271 0.7293275 0.7293277 0.7293278
(c) 2.004 2.004 2.009

Table: Numerical solutions of the value function u∗ for the worst-case senario.
Shown are: (a) the maximal number of iterations among all time points; (b)
the numerical solutions Uρ,h at (T , x0); (c) the rate of increments
(Uρ,2h − Uρ,4h)/(Uρ,h − Uρ,2h).
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Numerical experiments

Optimal investment under ambiguity

Perform computations with the mesh size h = 1/640.

A first-order monotone convergence.

ρ 103 4× 103 16× 103 64× 103

u∗ (a) 0.75071151 0.75071215 0.75071231 0.75071235
(b) 3.9998 4.0006

u∗ (a) 0.72930381 0.72932303 0.72932783 0.72932903
(b) 4.0016 3.9976

Table: Numerical results of the value functions u∗ and u∗ with different
penalty parameters. Shown are: (a) the numerical solutions Uρ at
(T , x0); (b) the rate of increments (Uρ/4 − Uρ/16)/(Uρ − Uρ/4).
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Numerical experiments

Optimal investment under ambiguity

Figure: Feedback control strategies with ρ = 16× 103 for the best-case
scenario (left) and the worst-case scenario (right), where the early
stopping region is white.
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Conclusions

Construct the solution and free boundary of HJBVIs with
monotone drivers from a sequence of penalized equations, for
which the penalization error is estimated.

Establish the well-posedness and convergence of semi-implicit
monotone schemes for the penalized equation.

Propose policy iteration with local superlinear convergence for
solving the discrete equation.

C. Reisinger, and Y. Zhang, A penalty scheme and policy
iteration for nonlocal HJB variational inequalities with
monotone drivers, preprint, arXiv:1805.06255 [math.NA],
2018.
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Conclusions

Thank You!
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